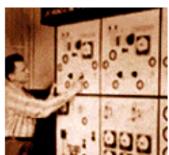


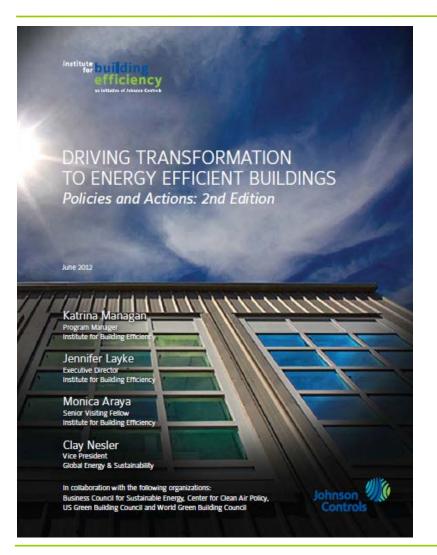
CLEAN-TECH INNOVATION FOR BUILDINGS

Case studies in global technology partnership

Promoting Clean-tech Innovation for Low-carbon Growth

Rio+20 Conference - US Center – 17 June 2012 Clay Nesler Vice President, Global Energy and Sustainability


JOHNSON CONTROLS - BUILDING EFFICIENCY BUSINESS


 Founded in 1885 by Warren Johnson, inventor of the first electric room thermostat

- Over 40,000 employees in 500+ locations in 150 countries
- Over 1.5B sq. ft. of space under direct management, with services provided to a further 20B sq. ft.
- \$7.5 billion of cost savings guaranteed and 18M metric tons of GHG emissions reduced since 2000

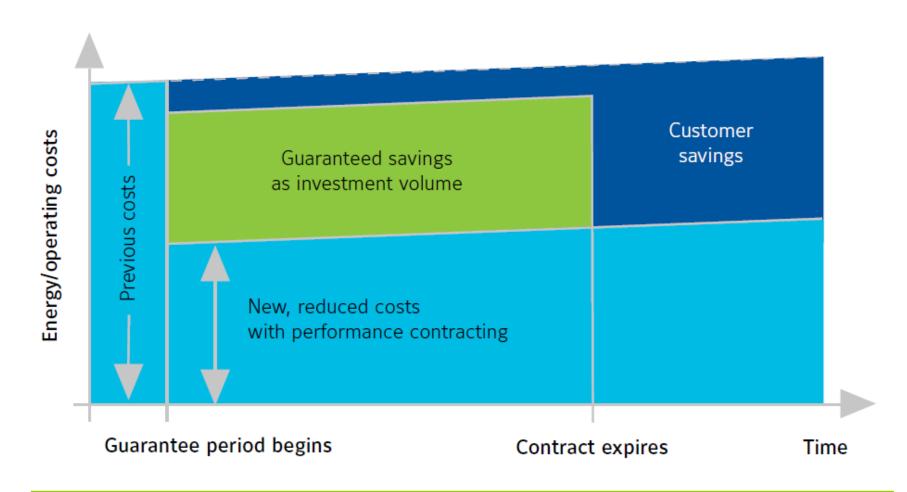
DRIVING TRANSFORMATION TO EFFICIENT BUILDINGS

TABLE OF CONTENTS	
IABLE OF CONTENTS	
BIG PICTURE	
Executive Summary	1-3
The Sustainable Development Opportunity in Buildings	1-9
Climate Action and Buildings	1-21
Transforming Buildings: A Policy Pathway Over the Efficiency Gap	1-33
POLICY OPTIONS	
Building Efficiency Codes and Standards	2-3
Energy Efficiency Improvement Targets	2-9
Increase Awareness: Information and Market Transparency	2-13
Financial Incentives	2-19
Actions for Utilities	2-23
Capacity Building	2-27
Case Studies (Mexico and Singapore)	2-29
TAKING ACTION	
Getting Started	3-3
Designing a Financial Pathway	3-15
Private Sector Role and Perspective	3-21
BUILDING EFFICIENCY POLICY ASSESSMENT TOOL	
Facilitators Guide	4-3
Assessment Sheets	4-13
Output Charts	4-23

WORLD GREEN BUILDING COUNCIL

PRIVATE SECTOR PERSPECTIVE

- Factors that influence investment in emerging economies
 - Size of the market
 - Market enabling regulatory regime
 - Stable investment framework
 - Integrity of the business community
 - Small /mid-sized companies available and willing to enter into partnerships
 - Public funding and incentives
 - Availability of a skilled workforce
 - Government willingness to support public-private partnerships for training and capacity building
 - Adequate intellectual property protection and enforcement policies



POLICIES HELP BRIDGE THE EFFICIENCY GAP

ENERGY PERFORMANCE CONTRACTING

CASE STUDY - ENERGY PERFORMANCE CONTRACTING

- Inorbit Mall Largest mall in Mumbai (50,000 m2)
- First EPC project completed in Asia as part of the Clinton Climate Initiative's energy efficiency building retrofit program (EEBRP)
- Comprehensive improvement measures
 - Replace chilled water and condenser pumps
 - Installed variable speed drives in air handlers
 - Enhanced building automation including peak demand limiting and night time set backs
 - Lighting retrofit including LED fixtures in car park
 - Submetering and monitoring system
 - Solar powered educational LCD kiosk showing real time performance and benefits of the project
- 2.8 years simple payback on investment

CASE STUDY – TECHNOLOGY PARTNERSHIP

- The Shaw Method of Air conditioning (SMAC) incorporates TwinCoil™ technology and unique control algorithms that enable the decoupled control of space temperature and humidity generating significant energy savings and improvements in space conditions.
- University of Queensland Duhig Library
 - Improved space conditions
 - Ameliorated environment for mould growth
 - Guaranteed space humidity of < 55%RH
 - Eliminated requirement for space reheat
 - Eliminated simultaneous heating and cooling
 - Reduced energy consumption by 88%
- Payback 2 years

More research, analysis and information about energy efficient buildings and smart energy systems is available at:

www.InstituteBE.com

an initiative of Johnson Controls

