Enhanced Oil Recovery Environmental Benefits

How does EOR reduce CO2 emissions? Using CO2 captured from power plants and industrial sources to enhance oil production has the potential to help the U.S. reduce its emissions by improving the CO2 intensity of the industrial and power generation sectors. Over the life of a project, for every 2.5 barrels of oil produced, it is estimated that EOR can safely prevent one metric ton of CO2 from entering the atmosphere.3

A current estimate of CO2 use for EOR is 72 million metric tons per year; 55 million metric ton of CO2 come from natural sources and 17 million metric tons come from anthropogenic sources. But the potential for EOR to contribute to CO2 reduction goals is great, as supplies of natural CO2 are constrained. The volume that could be captured and sequestered from industrial facilities and power plants to support “next generation” EOR could be 20- 45 billion metric tons of CO2. This is equal to the total U.S. CO2 production from fossil fuel electricity generation for 10 to 20 years. (ARI, 2011)

Will CO2-EOR harm groundwater resources? EOR is governed by federal regulations that require the protection of underground sources of drinking water, under the EPA’s Underground Injection Control (UIC) program. Many states have obtained authority from EPA to administer the UIC program and have laws that meet or exceed EPA’s requirements. Permits issued by the EPA or states require that EOR operators manage their site in a manner that will prevent CO2 (and other formation fluids) from migrating out of the subsurface confining formation and into drinking water aquifers. ( 40 CFR §144.12)

The University of Texas Bureau of Economic Geology’s (TBEG) Gulf Coast Carbon Center has studied the longest running EOR site in the world at the Scurry Area Canyon Reef Operators in Scurry County, Texas (SACROC). SACROC has been operating since 1972 and has injected over 175 million tons of CO2. TBEG has found no evidence that CO2 has escaped the EOR site and contaminated groundwater resources. (TBEG)

Furthermore, the International Energy Agency’s Greenhouse Gas Programme (GHGP) Weyburn-Midale CO2Monitoring and Storage project is the site of the world’s largest CO2 monitoring project. Since 2000 more than 30 internationally recognized research organizations have conducted scientific assessments of the integrity of the geological storage system, monitored CO2 in the deep subsurface, and tested for any evidence of anthropogenic CO2 at the surface.None of the studies have detected anthropogenic CO2 in the soils or groundwater. (Cenovus, 2011)

What is the land use impact? CO2-EOR largely takes place at existing oil fields and CO2 is transported through underground pipelines thus reducing land use impacts.

References: